Premium
Improved Zernike‐type phase contrast for transmission electron microscopy
Author(s) -
KOECK P.J.B.
Publication year - 2015
Publication title -
journal of microscopy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.569
H-Index - 111
eISSN - 1365-2818
pISSN - 0022-2720
DOI - 10.1111/jmi.12250
Subject(s) - zernike polynomials , contrast transfer function , optics , phase (matter) , spherical aberration , contrast (vision) , optical transfer function , spatial frequency , resolution (logic) , physics , phase contrast imaging , electron microscope , electron , transmission (telecommunications) , image resolution , microscope , materials science , phase contrast microscopy , computer science , artificial intelligence , lens (geology) , wavefront , telecommunications , quantum mechanics
Summary Zernike phase contrast has been recognized as a means of recording high‐resolution images with high contrast using a transmission electron microscope. This imaging mode can be used to image typical phase objects such as unstained biological molecules or cryosections of biological tissue. According to the original proposal discussed in Danev and Nagayama (2001) and references therein, the Zernike phase plate applies a phase shift of π/2 to all scattered electron beams outside a given scattering angle and an image is recorded at Gaussian focus or slight underfocus (below Scherzer defocus). Alternatively, a phase shift of ‐π/2 is applied to the central beam using the Boersch phase plate. The resulting image will have an almost perfect contrast transfer function (close to 1) from a given lowest spatial frequency up to a maximum resolution determined by the wave length, the amount of defocus and the spherical aberration of the microscope. In this paper, I present theory and simulations showing that this maximum spatial frequency can be increased considerably without loss of contrast by using a Zernike or Boersch phase plate that leads to a phase shift between scattered and unscattered electrons of only π /4, and recording images at Scherzer defocus. The maximum resolution can be improved even more by imaging at extended Scherzer defocus, though at the cost of contrast loss at lower spatial frequencies.