z-logo
Premium
Petrological evidence for stepwise accretion of metamorphic soles during subduction infancy (Semail ophiolite, Oman and UAE )
Author(s) -
Soret Mathieu,
Agard Philippe,
Dubacq Benoît,
Plunder Alexis,
Yamato Philippe
Publication year - 2017
Publication title -
journal of metamorphic geology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.639
H-Index - 114
eISSN - 1525-1314
pISSN - 0263-4929
DOI - 10.1111/jmg.12267
Subject(s) - geology , ophiolite , subduction , metamorphic rock , geochemistry , metamorphic facies , mantle (geology) , granulite , petrology , tectonics , seismology , geomorphology , facies , structural basin
Metamorphic soles are tectonic slices welded beneath most large‐scale ophiolites. These slivers of oceanic crust metamorphosed up to granulite facies conditions are interpreted as forming during the first million years of intraoceanic subduction following heat transfer from the incipient mantle wedge towards the top of the subducting plate. This study reappraises the formation of metamorphic soles through detailed field and petrological work on three key sections from the Semail ophiolite (Oman and United Arab Emirates). Based on thermobarometry and thermodynamic modelling, it is shown that metamorphic soles do not record a continuous temperature gradient, as expected from simple heating by the upper plate or by shear heating as proposed in previous studies. The upper, high‐ T metamorphic sole is subdivided in at least two units, testifying to the stepwise formation, detachment and accretion of successive slices from the down‐going slab to the mylonitic base of the ophiolite. Estimated peak pressure–temperature conditions through the metamorphic sole, from top to bottom, are 850°C and 1 GPa, 725°C and 0.8 GPa and 530°C and 0.5 GPa. These estimates appear constant within each unit but differing between units by 100–200°C and ~0.2 GPa. Despite being separated by hundreds of kilometres below the Semail ophiolite and having contrasting locations with respect to the ridge axis position, metamorphic soles show no evidence for significant petrological variations along strike. These constraints allow us to refine the tectonic–petrological model for the genesis of metamorphic soles, formed via the stepwise stacking of several homogeneous slivers of oceanic crust and its sedimentary cover. Metamorphic soles result not so much from downward heat transfer (ironing effect) as from progressive metamorphism during strain localization and cooling of the plate interface. The successive thrusts originate from rheological contrasts between the sole, initially the top of the subducting slab, and the peridotite above as the plate interface progressively cools. These findings have implications for the thickness, the scale and the coupling state at the plate interface during the early history of subduction/obduction systems.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here