Premium
Details of the gabbro‐to‐eclogite transition determined from microtextures and calculated chemical potential relationships
Author(s) -
Schorn S.,
Diener J. F. A.
Publication year - 2017
Publication title -
journal of metamorphic geology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.639
H-Index - 114
eISSN - 1525-1314
pISSN - 0263-4929
DOI - 10.1111/jmg.12220
Subject(s) - kyanite , geology , geochemistry , plagioclase , eclogite , igneous rock , gabbro , anorthite , petrology , mineralogy , metamorphic rock , subduction , paleontology , quartz , tectonics
Permian‐aged metagabbros from the eclogite type‐locality in the eastern European Alps were partially to completely transformed to eclogite during Eoalpine intracontinental subduction. Microtextures developed along a preserved fluid infiltration and reaction front in the gabbros record the incipient gabbro‐to‐eclogite transition, allowing the details of the eclogitization process to be investigated. Original, anorthite‐rich igneous plagioclase is pervasively replaced by fine‐grained intergrowths of clinozoisite, kyanite and Na‐rich plagioclase. Where plagioclase was in contact with igneous orthopyroxene, 100–200 μ m thick bimineralic coronae of symplectic kyanite and diopsidic clinopyroxene form along the edges of the grains. The rims of igneous orthopyroxene develop a complementary bimineralic corona of diopsidic clinopyroxene and garnet. Igneous clinopyroxene does not show any breakdown textures; however, jadeite content gradually increases towards the rims. In addition, exsolution lamellae inherited from the igneous clinopyroxene become progressively more jadeitic as eclogitization proceeds. Given that the igneous plagioclase is pervasively replaced by clinozoisite, kyanite and Na‐rich plagioclase, whereas kyanite–diopside symplectites are confined to narrow rim zones, we suggest that the development of these textures was controlled by the (im)mobility of different elements on different length scales. The presence of hydrous minerals in the core of anhydrous plagioclase indicates that H 2 O diffusivity occurred on a mm‐scale. By contrast, the size of the anhydrous diopside–kyanite and diopside–garnet symplectites indicate that Fe–Mg–Ca–Na diffusivity was limited to a 10s of μ m scale. Chemical potential relations calculated in the idealized NCASH chemical system show that the clinozoisite–kyanite–albite intergrowths formed due to an increase of μ H 2 O to plagioclase, whereas all other elements remained effectively immobile on the scale of this texture. Fluid conditions indicated by this texture span from virtually dry conditions ( a H 2 O ∼ 0.15) to H 2 O‐saturation, and therefore does not imply that the rocks were ever fluid‐saturated. Calculations in the CMAS and NCFMAS systems show that the gabbro‐to‐eclogite transition is characterized by the growth of garnet, diopsidic clinopyroxene and kyanite due to diffusion of Ca (+ Na) and Mg (+ Fe) along a μ CaO (+ Na 2 O)– μ MgO (+ FeO) chemical potential gradient developed between orthopyroxene and plagioclase compositional domains. The anhydrous nature of the textures indicate that the gabbro‐to‐eclogite transition is not driven by hydration; however, increased μ H 2 O acts as a catalyst that increases diffusivity of all elements and rates of dissolution–precipitation, allowing the overstepped metamorphic reactions to occur. Our results show that crustal eclogite formation requires low H 2 O content, confirming that true eclogites are dry rocks.