Premium
Revised empirical garnet–biotite–muscovite–plagioclase geobarometer in metapelites
Author(s) -
Wu C. M.
Publication year - 2015
Publication title -
journal of metamorphic geology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.639
H-Index - 114
eISSN - 1525-1314
pISSN - 0263-4929
DOI - 10.1111/jmg.12115
Subject(s) - plagioclase , barometer , muscovite , geology , biotite , thermometer , quartz , geochemistry , mineralogy , random error , thermodynamics , statistics , geography , mathematics , paleontology , physics , meteorology
The garnet–biotite–muscovite–plagioclase (GBMP) barometer was empirically revised for P–T conditions of 1–14 kbar and 450–840 °C, using 263 metapelitic rock samples from all over the world. This barometer is based on activity models for garnet, biotite and plagioclase identical to those of the well‐calibrated garnet–biotite thermometer and the garnet–aluminosilicate–plagioclase–quartz (GASP) barometer. The GBMP barometer is less temperature dependent than the GASP barometer and can be applied to either Al 2 SiO 5 ‐absent or Al 2 SiO 5 ‐bearing metapelites. The total error of the GBMP barometer is estimated to be about ±1.2 kbar on considering input temperature error and analytical errors of chemical compositions of the phases involved. The random error of the GBMP barometer is evenly distributed with respect to pressure, temperature and mineral composition. Simultaneous application of the GBMP barometer and the garnet–biotite thermometer identifies the correct stability field for Al 2 SiO 5 ‐bearing metapelites. Application of the GBMP barometer to metapelitic rocks within the same geological terranes or thermal contact aureoles yielded similar pressures within error. A spreadsheet for implementing the proposed GBMP geobarometer is supplied on the journal's website.