Premium
Synergistic regulation of drought‐responsive genes by transcription factor OsbZIP23 and histone modification in rice
Author(s) -
Zong Wei,
Yang Jun,
Fu Jie,
Xiong Lizhong
Publication year - 2020
Publication title -
journal of integrative plant biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.734
H-Index - 83
eISSN - 1744-7909
pISSN - 1672-9072
DOI - 10.1111/jipb.12850
Subject(s) - h3k4me3 , gene , transcription factor , histone , biology , gene expression , regulation of gene expression , promoter , genetics , microbiology and biotechnology
Summary Thousands of differentially expressed genes (DEGs) have been identified in rice under drought stress conditions. However, the regulatory mechanism of these DEGs remains largely unclear. Here, we report an interplay between histone H3K4me3 modification and transcription factor OsbZIP23 in the regulation of a dehydrin gene cluster under drought stress conditions in rice. When the H3K4me3 modification level was increased, the dehydrin gene expression levels were increased, and the binding levels of OsbZIP23 to the promoter of the dehydrin genes were also enhanced. Conversely, the H3K4me3 modification and dehydrin gene expression levels were downregulated in the osbzip23 mutant under drought stress conditions. Our study uncovers a collaboration between transcription factor and H3K4me3 modification in the regulation of drought‐responsive genes, which will help us to further understand the gene regulation mechanism under stress conditions in plants.