z-logo
Premium
A novel tomato SUMO E3 ligase, SlSIZ1, confers drought tolerance in transgenic tobacco
Author(s) -
Zhang Song,
Zhuang Kunyang,
Wang Shiju,
Lv Jinlian,
Ma Na'na,
Meng Qingwei
Publication year - 2017
Publication title -
journal of integrative plant biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.734
H-Index - 83
eISSN - 1744-7909
pISSN - 1672-9072
DOI - 10.1111/jipb.12514
Subject(s) - sumo protein , arabidopsis , ubiquitin ligase , transgene , abscisic acid , dna ligase , microbiology and biotechnology , arabidopsis thaliana , mutant , drought tolerance , ectopic expression , biology , genetically modified crops , reactive oxygen species , chemistry , biochemistry , botany , gene , ubiquitin
SUMOylation is an important post‐translational modification process that regulates different cellular functions in eukaryotes. SIZ/PIAS‐type SAP and Miz1 (SIZ1) proteins exhibit SUMO E3 ligase activity, which modulates SUMOylation. However, SIZ1 in tomato has been rarely investigated. In this study, a tomato SIZ1 gene ( SlSIZ1 ) was isolated and its molecular characteristics and role in tolerance to drought stress are described. SlSIZ1 was up‐regulated by cold, sodium chloride (NaCl), polyethylene glycol (PEG), hydrogen peroxide (H 2 O 2 ) and abscisic acid (ABA), and the corresponding proteins were localized in the nucleus. The expression of SlSIZ1 in Arabidopsis thaliana (Arabidopsis) siz1‐2 mutants partially complemented the phenotypes of dwarf, cold sensitivity and ABA hypersensitivity. SlSIZ1 also exhibited the activity of SUMO E3 ligase to promote the accumulation of SUMO conjugates. Under drought stress, the ectopic expression of SlSIZ1 in transgenic tobacco lines enhanced seed germination and reduced the accumulation of reactive oxygen species. SlSIZ1 overexpression conferred the plants with improved growth, high free proline content, minimal malondialdehyde accumulation and increased accumulation of SUMO conjugates. SlSIZ1 is a functional homolog of Arabidopsis SIZ1 with SUMO E3 ligase activity. Therefore, overexpression of SlSIZ1 enhanced the tolerance of transgenic tobacco to drought stress.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here