Premium
Revealing the Environmental Advantages of Industrial Symbiosis in Wood‐Based Bioeconomy Networks: An Assessment From a Life Cycle Perspective
Author(s) -
Hildebrandt Jakob,
O'Keeffe Sinéad,
Bezama Alberto,
Thrän Daniela
Publication year - 2019
Publication title -
journal of industrial ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.377
H-Index - 102
eISSN - 1530-9290
pISSN - 1088-1980
DOI - 10.1111/jiec.12818
Subject(s) - industrial symbiosis , sustainability , industrial ecology , life cycle assessment , business , circular economy , environmental impact assessment , raw material , production (economics) , environmental economics , environmental resource management , environmental science , engineering , ecology , waste management , economics , biology , macroeconomics
Summary The German government has recently initiated funding schemes that incentivize strategies for wood‐based bioeconomy regions. Regional wood and chemical industries have been encouraged to act symbiotically, that is, share pilot plant facilities, couple processes where feasible, and cascade woody feedstock throughout their process networks. However, during the planning stages of these bioeconomy regions, options need to be assessed for sustainably integrating processes and energy integration between the various industries that produce bio‐based polymers and engineered wood products. The aim of this paper is to identify the environmental sustainability of industrial symbiosis for producing high‐value‐added, bio‐based products in the wood‐based bioeconomy region of Central Germany. An analysis was conducted of three possible future scenarios with varying degrees of symbiosis in the bioeconomy network. A life cycle assessment (LCA) approach was used to compare these three scenarios to a traditional fossil‐based production system. Eleven environmental impact categories were considered. The results show that, in most cases, the bioeconomy network outperformed the fossil‐based production system, mitigating environmental impacts by 25% to 130%.