z-logo
Premium
Energy, Nitrogen, and Farm Surplus Transitions in Agriculture from Historical Data Modeling. France, 1882–2013.
Author(s) -
Harchaoui Souhil,
Chatzimpiros Petros
Publication year - 2019
Publication title -
journal of industrial ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.377
H-Index - 102
eISSN - 1530-9290
pISSN - 1088-1980
DOI - 10.1111/jiec.12760
Subject(s) - agriculture , agricultural economics , food energy , fossil fuel , agricultural productivity , economics , greenhouse gas , natural resource economics , environmental science , ecology , biology , biochemistry
Summary This article addresses agricultural metabolism and transitions for energy, nitrogen, farm production, self‐sufficiency, and surplus from historical data since the nineteenth century. It builds on an empirical data set on agricultural production and production means in France covering 130 consecutive years (1882–2013). Agricultural transitions have increased the net production and surplus of farms by a factor of 4 and have zeroed self‐sufficiency. The energy consumption remained quasi‐stable since 1882, but the energy and nitrogen structure of agriculture fully changed. With an EROI (energy return to energy invested) of 2 until 1950, preindustrial agriculture consumed as much energy to function as it provided in exportable surplus to sustain the nonagricultural population. The EROI doubled to 4 over the last 60 years, driven, on the one hand, by efficiency improvements in traction through the replacement of draft animals by motors and, on the other hand, by the joint increase in crop yields and efficiency in nitrogen use. Agricultural energy and nitrogen transitions shifted France from a self‐sufficiency agri‐food‐energy regime to a fossil‐dependent food export regime. Knowledge of resource conversion mechanisms over the long duration highlights the effects of changing agricultural metabolism on the system's feeding capacity. Farm self‐sufficiency is an asset against fossil fuel constraints, price volatility, and greenhouse gas emissions, but it equates to lower farm surplus in support of urbanization.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here