Premium
Evaluating the Use of Global Sensitivity Analysis in Dynamic MFA
Author(s) -
Džubur Nađa,
Buchner Hanno,
Laner David
Publication year - 2017
Publication title -
journal of industrial ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.377
H-Index - 102
eISSN - 1530-9290
pISSN - 1088-1980
DOI - 10.1111/jiec.12497
Subject(s) - sensitivity (control systems) , variance based sensitivity analysis , variance (accounting) , material flow analysis , uncertainty analysis , computer science , econometrics , flow (mathematics) , mathematical optimization , mathematics , control theory (sociology) , statistics , simulation , analysis of variance , one way analysis of variance , economics , engineering , geometry , accounting , electronic engineering , waste management , control (management) , artificial intelligence
Summary Dynamic material flow analysis (MFA) provides information about material usage over time and consequent changes in material stocks and flows. In order to understand the effect of limited data quality and model assumptions on MFA results, the use of sensitivity analysis methods in dynamic MFA studies has been on the increase. So far, sensitivity analysis in dynamic MFA has been conducted by means of a one‐at‐a‐time method, which tests parameter perturbations individually and observes the outcomes on output. In contrast to that, variance‐based global sensitivity analysis decomposes the variance of the model output into fractions caused by the uncertainty or variability of input parameters. The present study investigates interaction and time‐delay effects of uncertain parameters on the output of an archetypal input‐driven dynamic material flow model using variance‐based global sensitivity analysis. The results show that determining the main (first‐order) effects of parameter variations is often sufficient in dynamic MFA because substantial effects attributed to the simultaneous variation of several parameters (higher‐order effects) do not appear for classical setups of dynamic material flow models. For models with time‐varying parameters, time‐delay effects of parameter variation on model outputs need to be considered, potentially boosting the computational cost of global sensitivity analysis. Finally, the implications of exploring the sensitivities of model outputs with respect to parameter variations in the archetypical model are used to derive model‐ and goal‐specific recommendations on choosing appropriate sensitivity analysis methods in dynamic MFA.