z-logo
Premium
EU‐Average Impacts of Wheat Production: A Meta‐Analysis of Life Cycle Assessments
Author(s) -
Achten Wouter M.J.,
Acker Karel
Publication year - 2016
Publication title -
journal of industrial ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.377
H-Index - 102
eISSN - 1530-9290
pISSN - 1088-1980
DOI - 10.1111/jiec.12278
Subject(s) - life cycle assessment , environmental science , tonne , agriculture , eutrophication , production (economics) , agricultural economics , agricultural science , nutrient , economics , biology , ecology , waste management , engineering , macroeconomics
Summary Wheat is an important commodity in Europe. With a production of 133 million tonnes per year and annual import and export accounting for 6.3 and 5.3 billion US$, respectively, wheat is the most important cereal in Europe. Wheat cultivation further feeds into a wide variety of products ranging from bread, over imitation meat, to biofuels and bio‐based materials. Therefore, it is desirable to have a synthetic life cycle assessment (LCA) of the impacts of an average kilogram (kg) of wheat produced in Europe. This article aims to provide such a synthesis using two strategies. In the first strategy, we give an overview of published LCA impacts of wheat production. A second strategy is a meta‐analysis in which a re‐evaluation is made of 20 available life cycle inventories representing cases in 11 different European countries. Based on the production shares of these countries in the total European production, weighted average impacts are calculated. These weighted averages of the re‐evaluated inventories show that an average kg of wheat grain produced in Europe demands 3.25 megajoules of nonrenewable, fossil energy, emits 0.61 to 0.65 kg carbon dioxide equivalents, triggers terrestrial acidification of 4.94 to 6.51 grams (g) sulphur dioxide equivalents, freshwater eutrophication of 0.08 to 0.09 g phosphorous equivalents, marine eutrophication of 4.97 to 7.60 g nitrogen equivalents, and occupies 1.63 square meter years of agricultural land. The re‐evaluation of studies results in similar impacts as the mere reviewing of energy demands and global warming potentials. Given the many applications of wheat, the presented meta‐analysis is interesting to evaluate the average and range of environmental performance of wheat production in Europe, but is also useful as an input in assessing impacts of wheat‐based products.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here