Premium
Using Nested Average Electricity Allocation Protocols to Characterize Electrical Grids in Life Cycle Assessment
Author(s) -
Colett Joseph S.,
Kelly Jarod C.,
Keoleian Gregory A.
Publication year - 2016
Publication title -
journal of industrial ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.377
H-Index - 102
eISSN - 1530-9290
pISSN - 1088-1980
DOI - 10.1111/jiec.12268
Subject(s) - electricity , life cycle assessment , greenhouse gas , environmental economics , electricity generation , industrial ecology , consumption (sociology) , production (economics) , environmental science , generator (circuit theory) , business , computer science , economics , microeconomics , engineering , ecology , power (physics) , electrical engineering , social science , physics , quantum mechanics , sociology , biology , sustainability
Summary This study explored the impacts of electricity allocation protocols on the life cycle greenhouse gas (GHG) emissions of electricity consumption. The selection of appropriate electricity allocation protocols, methodologies that assign pools of electricity generators to electricity consumers, has not been well standardized. This can lead to very different environmental profiles of similar, electricity‐intensive processes. In an effort to better represent the interconnected nature of the U.S. electrical grid, we propose two new protocols that utilize inter‐regional trade information and localized emission factors to combine generating pools that are sub‐ or supersets of one another. This new nested approach increases the likelihood of capturing important inter‐regional electricity trading and the appropriate assignment of generator emissions to consumers of local and regional electricity. We applied the new and existing protocols to the U.S. primary aluminum industry, an industry whose environmental impact is heavily tied to its electricity consumption. Our analysis found GHG emission factors that were dramatically different than those reported in previous literature. We calculated production‐weighted average emission factors of 19.0 and 19.9 kilograms carbon dioxide equivalent per kilogram of primary aluminum ingot produced when using our two nested electricity allocation protocols. Previous studies reported values of 10.5 and 11.0, at least 42% lower than those found by our study.