
Assessing compound flooding potential with multivariate statistical models in a complex estuarine system under data constraints
Author(s) -
Santos Víctor M.,
Wahl Thomas,
Jane Robert,
Misra Shubhra K.,
White Kathleen D.
Publication year - 2021
Publication title -
journal of flood risk management
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.049
H-Index - 36
ISSN - 1753-318X
DOI - 10.1111/jfr3.12749
Subject(s) - outlier , flooding (psychology) , multivariate statistics , extreme value theory , conditional independence , covariate , statistics , statistical model , environmental science , computer science , sensitivity (control systems) , mathematics , engineering , psychology , electronic engineering , psychotherapist
Compound flooding may result from the interaction of two or more contributing processes, which may not be extreme themselves, but in combination lead to extreme impacts. Here, we use statistical methods to assess compounding effects from storm surge and multiple riverine discharges in Sabine Lake, TX. We employ several trivariate statistical models, including vine‐copulas and a conditional extreme value model, to examine the sensitivity of results to the choice of data pre‐processing steps, statistical model setup, and outliers. We define a response function that represents water levels resulting from the interaction between discharge and surge processes inside Sabine Lake and explore how it is affected by including or ignoring dependencies between the contributing flooding drivers. Our results show that accounting for dependencies leads to water levels that are up to 30 cm higher for a 2% annual exceedance probability (AEP) event and up to 35 cm higher for a 1% AEP event, compared to assuming independence. We also find notable variations in the results across different sampling schemes, multivariate model configurations, and sensitivity to outlier removal. Under data constraints, this highlights the need for testing various statistical modelling approaches, while the choice of an optimal approach remains subjective.