z-logo
Premium
Optimizing precooling of large beef carcasses using a comprehensive computational fluid dynamics model
Author(s) -
Delele Mulugeta A.,
Kuffi Kumsa D.,
Geeraerd Annemie,
De Smet Stefaan,
Nicolai Bart M.,
Verboven Pieter
Publication year - 2019
Publication title -
journal of food process engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.507
H-Index - 45
eISSN - 1745-4530
pISSN - 0145-8876
DOI - 10.1111/jfpe.13053
Subject(s) - environmental science , airflow , energy consumption , water cooling , cooling capacity , computational fluid dynamics , variable (mathematics) , simulation , computer science , mathematics , mechanical engineering , mechanics , engineering , physics , mathematical analysis , electrical engineering
Precooling has been questioned as a suitable step in the process of beef carcass cooling. Model‐based optimization was performed to identify optimum operating conditions for different heavy‐muscled beef carcass cooling practices in slaughterhouses with both precooling and cooling stages. The study was conducted using a validated computational fluid dynamics model of the beef carcass cooling process. The precooling practice was optimized based on a weighted impact function taking into account energy consumption, weight loss, cooling time, and heat shortening duration. The values of these output variables were dependent on air temperature, air velocity, and precooling time. The results clearly show the benefit of using a precooling unit that operates with an optimum precooling time, cooling air temperature, and velocity. Using a weighted impact function of energy cost and quality, a precooling time of 4 hr using −30°C but low air velocity (0.58 m s −1 ) appeared more beneficial than precooling using high airflow fans with high energy consumption. The eventual optimum operation conditions depend on the impact variable that the operator wants to minimize and is a trade‐off between adverse effects on energy use and meat quality. Practical applications The comprehensive computational fluid dynamics model can be applied to optimize the operation and design of carcass precooling system. Carcass cooling system operators can make a choice of the impact variable they want to minimize and use the approach to determine the optimum operating condition of the cooling system. The approach can be applied to develop carcass cooling procedure that could potentially minimize the energy consumption and maximize the quality of the carcass.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here