z-logo
Premium
The external phenotype–skeleton link in post‐hatch farmed Chinook salmon ( Oncorhynchus tshawytscha )
Author(s) -
De Clercq A,
Perrott M R,
Davie P S,
Preece M A,
Huysseune A,
Witten P E
Publication year - 2018
Publication title -
journal of fish diseases
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.819
H-Index - 85
eISSN - 1365-2761
pISSN - 0140-7775
DOI - 10.1111/jfd.12753
Subject(s) - biology , skeleton (computer programming) , oncorhynchus , chinook wind , anatomy , axial skeleton , vertebral column , fish <actinopterygii> , fishery
Skeletal deformities in farmed fish are a recurrent problem. External malformations are easily recognized, but there is little information on how external malformations relate to malformations of the axial skeleton: the external phenotype–skeleton link. Here, this link is studied in post‐hatch to first‐feed life stages of Chinook salmon ( Oncorhynchus tshawytscha ) raised at 4, 8 and 12°C. Specimens were whole‐mount‐stained for cartilage and bone, and analysed by histology. In all temperature groups, externally normal specimens can have internal malformations, predominantly fused vertebral centra. Conversely, externally malformed fish usually display internal malformations. Externally curled animals typically have malformed haemal and neural arches. External malformations affecting a single region (tail malformation and bent neck) relate to malformed notochords and early fusion of fused vertebral centra. The frequencies of internal malformations in both externally normal and malformed specimens show a U‐shaped response, with lowest frequency in 8°C specimens. The fused vertebral centra that occur in externally normal specimens represent a malformation that can be contained and could be carried through into harvest size animals. This study highlights the relationship between external phenotype and axial skeleton and may help to set the framework for the early identification of skeletal malformations on fish farms.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here