Premium
Curcumin–sunflower protein nanoparticles—A potential antiinflammatory agent
Author(s) -
Sneharani Athahalli Honnagirigowda
Publication year - 2019
Publication title -
journal of food biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.507
H-Index - 47
eISSN - 1745-4514
pISSN - 0145-8884
DOI - 10.1111/jfbc.12909
Subject(s) - curcumin , chemistry , nutraceutical , sunflower , antioxidant , solubility , sunflower seed , soy protein , drug delivery , nanoparticle , plant protein , biochemistry , food science , organic chemistry , nanotechnology , materials science , biology , agronomy
Curcumin is an antiinflammatory molecule, however, due to its lipophilic nature, has the limitation of very low aqueous solubility and degrades rapidly when dispersed in aqueous media. The potential of sunflower seed protein isolate (SFPI), one of the underutilized plant protein, as a drug carrier was studied by synthesizing SFPI nanoparticles (NPs) and encapsulating curcumin in NPs. Increase in solubility of encapsulated curcumin was observed with an encapsulation efficiency of 83%. Stability studies showed that curcumin–SFPI NPs are stable in water and in gastrointestinal condition. The mechanism of interaction of curcumin involves the binding with the hydrophobic patches of protein. In complex with NPs, curcumin showed potent antioxidant activity; antiinflammatory effect of curcumin was studied by following lipoxygenase inhibition (IC 50 = 45.3 µM). The study explores the potential of sunflower seed protein to be used as carrier for delivery of nutraceutical by taking curcumin as model compound. Practical applications Sunflower seed protein is one of the versatile, quality proteins found in abundance; yet it is an underutilized plant protein. The study exploits the use of sunflower seed protein as a delivery system for lipophilic nutraceuticals by synthesizing NPs and encapsulating them. Solubility and stability of curcumin is increased along with enhanced antioxidant and antiinflammatory activity in complex with SFPI NPs when compared to free curcumin.