Premium
Characterization of Endogenous Protease and the Changes in Proteolytic Activity of Acetes vulgaris and Macrobrachium lanchesteri During Kapi Production
Author(s) -
Pongsetkul Jaksuma,
Benjakul Soottawat,
Sumpavapol Punnanee,
Osako Kazufumi,
Faithong Nandhsha
Publication year - 2017
Publication title -
journal of food biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.507
H-Index - 47
eISSN - 1745-4514
pISSN - 0145-8884
DOI - 10.1111/jfbc.12311
Subject(s) - proteases , shrimp , biochemistry , pmsf , biology , proteolysis , food science , chemistry , enzyme , ecology
Characteristics of endogenous proteases of shrimp, Acetes vulgaris (AP) and Macrobrachium lanchesteri (MP) as well as the changes in proteolytic activity during Kapi production were investigated. Maximal activity of AP and MP was found at pH 7, 60C and pH 8, 60C, respectively. Activity of both proteases decreased with increasing NaCl concentration (0–30%). Both extracts were strongly inhibited by N ‐ethylmaleimide‐phenylmethane‐sulfonyl fluoride (PMSF) and soybean trypsin inhibitor (SBTI), suggesting that major proteases belonged to serine proteases. This was coincidental with high trypsin activity toward BAPNA and chymotrypsin activity toward BTEE. Proteolytic activity, trypsin and chymotrypsin were detectable throughout Kapi fermentation. The activity was decreased when salting was implemented. Nevertheless, activities increased continuously with increasing fermentation time. During Kapi production, proteins underwent degradation as indicated by the formation of oligopeptides and disappearance of myosin heavy chain and actin. Therefore, both endogenous and microbial proteases were more likely involved in proteolysis of shrimp during Kapi production. Practical Applications Kapi , traditional salted shrimp paste, is usually used as a condiment to enhance the palatability of many Thai foods. Recently, small shrimp Acetes Vulgaris and Macrobrachium lanchesteri have become the new alternative raw materials for Kapi production because of their availability. During fermentation, protein hydrolysis is induced by endogenous proteases in shrimp as well as those produced by halophilic bacteria. Those changes medicated by proteolysis can be associated with the final characteristics of Kapi .