z-logo
Premium
Differential uses of coral reef habitats by a poorly‐known cryptic fish predator
Author(s) -
Morat Fabien,
Briand Marine J.,
Pécheyran Christophe,
Letourneur Yves
Publication year - 2019
Publication title -
journal of fish biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.672
H-Index - 115
eISSN - 1095-8649
pISSN - 0022-1112
DOI - 10.1111/jfb.13853
Subject(s) - otolith , biology , reef , larva , coral , coral reef , predator , zoology , ecology , fishery , fish <actinopterygii> , predation
This study used otolith microchemistry to evaluate whether the moray eel Gymnothorax chilospilus uses different habitats throughout its life (mainly juvenile and adult phases). Of the most informative trace elements within otoliths (the twelve isotopes 23 Na, 25 Mg, 43 Ca, 55 Mn, 59 Co, 60 Ni, 63 Cu, 66 Zn, 86 Sr, 111 Cd, 138 Ba and 208 Pb) only three ratios of Ca (Na:Ca, Sr:Ca and Ba:Ca) were informative and therefore used in a multivariate regression‐tree analysis. Using a multivariate partitioning, three main phases were described from profiles, including the larval life phase (leptocephali), the intermediate phase (longest section between the larval life phase and the terminal phase) and the terminal phase (final section i.e. , the most recent months preceding the death of fish). According to concentrations of the three ratios to Ca, G. chilospilus can be separated into three groups during their larval life stage (very different in Sr and Na), four groups during the intermediate phase (few differences in Sr and Na) and three groups during the terminal phase (differences in Sr), illustrating that G. chilospilus inhabit different habitats during these three phases. Our results showed that the leptocephali encountered different oceanic water masses with fluctuating Sr:Ca ratios during the early larval phase. During the intermediate phase (main part of their life‐span), they lived in lagoonal waters such as fringing reefs or reef flats of lagoonal islets, characterized by a lower Sr:Ca ratio. During the latter part of their life, approximately one third of G. chilospilus encountered more oceanic waters close to or at barrier reefs, suggesting possible movements of these fish along a coast‐to‐ocean gradient.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here