z-logo
Premium
Eicosapentaenoic Acid Modulates Trichomonas vaginalis Activity
Author(s) -
Korosh Travis,
Jordan Kelsey D.,
Wu JaShin,
Yarlett Nigel,
Upmacis Rita K.
Publication year - 2015
Publication title -
journal of eukaryotic microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.067
H-Index - 77
eISSN - 1550-7408
pISSN - 1066-5234
DOI - 10.1111/jeu.12263
Subject(s) - trichomonas vaginalis , eicosapentaenoic acid , biology , arachidonic acid , docosahexaenoic acid , parasite hosting , microbiology and biotechnology , fatty acid , biochemistry , polyunsaturated fatty acid , enzyme , world wide web , computer science
Trichomonas vaginalis is a sexually transmitted parasite and, while it is often asymptomatic in males, the parasite is associated with disease in both sexes. Metronidazole is an effective treatment for trichomoniasis, but resistant strains have evolved and, thus, it has become necessary to investigate other possible therapies. In this study, we examined the effects of native and oxidized forms of the sodium salts of eicosapentaenoic, docosahexaenoic, and arachidonic acids on T. vaginalis activity. Eicosapentaenoic acid was the most toxic with 190 and 380 μM causing approximately 90% cell death in Casu2 and ATCC 50142 strains, respectively. In contrast, oxidized eicosapentaenoic acid was the least toxic, requiring > 3 mM to inhibit activity, while low levels (10 μM) were associated with increased parasite density. Mass spectrometric analysis of oxidized eicosapentaenoic acid revealed C20 products containing one to six additional oxygen atoms and various degrees of bond saturation. These results indicate that eicosapentaenoic acid has different effects on T. vaginalis survival, depending on whether it is present in the native or oxidized form. A better understanding of lipid metabolism in T. vaginalis may facilitate the design of synthetic fatty acids that are effective for the treatment of metronidazole‐resistant T. vaginalis .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here