Premium
Ecological Differentiation of Cryptic Species within an Asexual Protist Morphospecies: A Case Study of Filamentous Green Alga Klebsormidium (Streptophyta)
Author(s) -
Škaloud Pavel,
Rindi Fabio
Publication year - 2013
Publication title -
journal of eukaryotic microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.067
H-Index - 77
eISSN - 1550-7408
pISSN - 1066-5234
DOI - 10.1111/jeu.12040
Subject(s) - biology , species complex , protist , lineage (genetic) , phylogenetic tree , ecology , phylogenetics , taxon , evolutionary biology , botany , gene , biochemistry
Taxa of microbial eukaryotes defined on morphological basis display a large degree of genetic diversity, implying the existence of numerous cryptic species. However, it has been postulated that genetic diversity merely mirrors accumulation of neutral mutations. As a case taxon to study cryptic diversity in protists, we used a widely distributed filamentous genus, Klebsormidium , specifically the lineage E ( K. flaccidum / K. nitens complex) containing a number of morphologically similar strains. Fourteen clades were recognized in the phylogenetic analysis based on a concatenated ITS rDNA + rbc L data set of more than 70 strains. The results of inferred character evolution indicated the existence of phylogenetic signal in at least two phenotypic characters (production of hydro‐repellent filaments and morphology of zoosporangia). Moreover, the lineages recovered exhibited strong ecological preferences to one of the three habitat types: natural subaerial substrata, artificial subaerial substrata, and aquatic habitats. We interpret these results as evidence of existence of a high number of cryptic species within the single morphospecies. We consider that the permanent existence of genetically and ecologically well‐defined cryptic species is enabled by the mechanism of selective sweep.