Premium
Weather and landscape influences on pollinator visitation of flowering winter oilseeds (field pennycress and winter camelina)
Author(s) -
Forcella Frank,
Patel Swetabh,
Lenssen Andrew W.,
Hoerning Cody,
Wells M. Scott,
Gesch Russ W.,
Berti Marisol T.
Publication year - 2021
Publication title -
journal of applied entomology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.795
H-Index - 60
eISSN - 1439-0418
pISSN - 0931-2048
DOI - 10.1111/jen.12854
Subject(s) - camelina , biology , pollinator , camelina sativa , nectar , pollination , pollen , agronomy , ecology , crop
Flowers of field pennycress ( Thlaspi arvsense L.) and winter camelina ( Camelina sativa (L.) Crantz.) produce abundant pollen and nectar in early spring and thereby may be valuable for pollinators. Insects observed in field plots of these flowers were classified into seven easily identifiable groups (bumblebee, honeybee, solitary bee, butterfly/moth, beetle, fly and other) and monitored for 2 years at three sites in the Upper Midwest region of the USA. Average seasonal observations across years and sites varied from 1.6 to 5.3 total insects/min for field pennycress and 1.4 to 4.5 insects/min for winter camelina. Lowest visitation rates occurred in central Iowa and highest rates in south‐eastern Minnesota for both crops. Multiple regressions showed that visitation rates for specific insect groups were correlated poorly but significantly ( p < .10) with select variables. For example, in field pennycress, visitation by combined bumblebees and honeybees (Apidae) increased with greater air temperature at sampling time and annual site precipitation, whereas fly (Diptera) visitation was related to sampling date and flower cover. Similarly, in winter camelina, solitary bees were linked to increasing air temperature at sampling time and annual site precipitation, whereas flies were correlated with wind speed and flower cover at sampling. Field pennycress and winter camelina are reliably attractive to beneficial pollinating insects across a wide geographic region, but visitation rates and proportional representation of various insect groups depended on a range of site and weather characteristics.