z-logo
Premium
Erythritol ingestion impairs adult reproduction and causes larval mortality in Drosophila melanogaster fruit flies (Diptera: Drosophilidae)
Author(s) -
O'Donnell S.,
Baudier K.,
Fiocca K.,
Marenda D. R.
Publication year - 2018
Publication title -
journal of applied entomology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.795
H-Index - 60
eISSN - 1439-0418
pISSN - 0931-2048
DOI - 10.1111/jen.12409
Subject(s) - erythritol , biology , drosophila melanogaster , larva , population , toxicology , zoology , food science , botany , biochemistry , demography , sociology , gene
Previous feeding studies showed the polyalcohol erythritol was toxic when ingested by adult laboratory fruit flies ( Drosophila melanogaster ). We asked whether erythritol could additionally affect fly population growth either through larval toxicity or through effects on adult reproduction. Females did not avoid laying on food substrates with 1M erythritol; laying rate on 1M erythritol food was similar to control food when females were given free‐choice access. Eggs laid or placed on 0.5 M to 2.5 M erythritol foods hatched at normal rates, suggesting erythritol was not toxic to eggs upon contact. Drosophila melanogaster larvae readily consumed food containing 1 M erythritol, but none of these larvae reached pupation. Longevity of larvae feeding on in 1 M erythritol food was significantly reduced relative to controls, and mean ± SE larval lifespan on erythritol was 1.54 ± 0.10 days (max. = 3 days). Exposing cohorts of second‐instar larvae to food with varying concentrations of erythritol showed the LD 50 (at 24 hr) concentration was approximately 0.6 M. Taken together, these results suggest erythritol could be employed in effective larval‐sink baits. Adults flies fed with erythritol produced significantly fewer eggs on days when they fed on 1 M erythritol, and egg production was significantly reduced for one additional day after the adults were moved to control food. These findings suggest erythritol is rapid and effective at temporarily suppressing D. melanogaster reproduction, increasing its potential for use in effective insect population control.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here