Premium
Experimental sexual selection affects the evolution of physiological and life‐history traits
Author(s) -
Garlovsky Martin D.,
Holman Luke,
Brooks Andrew L.,
Novicic Zorana K.,
Snook Rhonda R.
Publication year - 2022
Publication title -
journal of evolutionary biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.289
H-Index - 128
eISSN - 1420-9101
pISSN - 1010-061X
DOI - 10.1111/jeb.14003
Subject(s) - biology , sexual conflict , sexual selection , mating , life history theory , antagonistic coevolution , evolutionary biology , selection (genetic algorithm) , sperm competition , reproduction , experimental evolution , mating system , ecology , genetics , life history , gene , artificial intelligence , computer science
Sexual selection and sexual conflict are expected to affect all aspects of the phenotype, not only traits that are directly involved in reproduction. Here, we show coordinated evolution of multiple physiological and life‐history traits in response to long‐term experimental manipulation of the mating system in populations of Drosophila pseudoobscura . Development time was extended under polyandry relative to monogamy in both sexes, potentially due to higher investment in traits linked to sexual selection and sexual conflict. Individuals (especially males) evolving under polyandry had higher metabolic rates and locomotor activity than those evolving under monogamy. Polyandry individuals also invested more in metabolites associated with increased endurance capacity and efficient energy metabolism and regulation, namely lipids and glycogen. Finally, polyandry males were less desiccation‐ and starvation resistant than monogamy males, suggesting trade‐offs between resistance and sexually selected traits. Our results provide experimental evidence that mating systems can impose selection that influences the evolution of non‐sexual phenotypes such as development, activity, metabolism and nutrient homeostasis.