Premium
Antagonistic species interaction drives selection for sex in a predator–prey system
Author(s) -
Koch Hanna R.,
Wagner Sophia,
Becks Lutz
Publication year - 2020
Publication title -
journal of evolutionary biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.289
H-Index - 128
eISSN - 1420-9101
pISSN - 1010-061X
DOI - 10.1111/jeb.13658
Subject(s) - biology , predation , predator , population , ecology , adaptation (eye) , sexual selection , selection (genetic algorithm) , evolutionary ecology , experimental evolution , evolutionary biology , demography , artificial intelligence , computer science , biochemistry , neuroscience , sociology , gene , host (biology)
The evolutionary maintenance of sexual reproduction has long challenged biologists as the majority of species reproduce sexually despite inherent costs. Providing a general explanation for the evolutionary success of sex has thus proven difficult and resulted in numerous hypotheses. A leading hypothesis suggests that antagonistic species interaction can generate conditions selecting for increased sex due to the production of rare or novel genotypes that are beneficial for rapid adaptation to recurrent environmental change brought on by antagonism. To test this ecology‐based hypothesis, we conducted experimental evolution in a predator (rotifer)–prey (algal) system by using continuous cultures to track predator–prey dynamics and in situ rates of sex in the prey over time and within replicated experimental populations. Overall, we found that predator‐mediated fluctuating selection for competitive versus defended prey resulted in higher rates of genetic mixing in the prey. More specifically, our results showed that fluctuating population sizes of predator and prey, coupled with a trade‐off in the prey, drove the sort of recurrent environmental change that could provide a benefit to sex in the prey, despite inherent costs. We end with a discussion of potential population genetic mechanisms underlying increased selection for sex in this system, based on our application of a general theoretical framework for measuring the effects of sex over time, and interpreting how these effects can lead to inferences about the conditions selecting for or against sexual reproduction in a system with antagonistic species interaction.