Premium
Genetic variance for behavioural ‘predictability’ of stress response
Author(s) -
Prentice Pamela M.,
Houslay Thomas M.,
Martin Julien G. A.,
Wilson Alastair J.
Publication year - 2020
Publication title -
journal of evolutionary biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.289
H-Index - 128
eISSN - 1420-9101
pISSN - 1010-061X
DOI - 10.1111/jeb.13601
Subject(s) - predictability , trait , biology , quantitative genetics , evolutionary biology , genetic variation , population , selection (genetic algorithm) , genetic correlation , natural selection , replicate , genetics , statistics , demography , gene , machine learning , computer science , mathematics , sociology , programming language
Abstract Genetic factors underpinning phenotypic variation are required if natural selection is to result in adaptive evolution. However, evolutionary and behavioural ecologists typically focus on variation among individuals in their average trait values and seek to characterize genetic contributions to this. As a result, less attention has been paid to if and how genes could contribute towards within‐individual variance or trait ‘predictability’. In fact, phenotypic ‘predictability’ can vary among individuals, and emerging evidence from livestock genetics suggests this can be due to genetic factors. Here, we test this empirically using repeated measures of a behavioural stress response trait in a pedigreed population of wild‐type guppies. We ask (a) whether individuals differ in behavioural predictability and (b) whether this variation is heritable and so evolvable under selection. Using statistical methodology from the field of quantitative genetics, we find support for both hypotheses and also show evidence of a genetic correlation structure between the behavioural trait mean and individual predictability. We show that investigating sources of variability in trait predictability is statistically tractable and can yield useful biological interpretation. We conclude that, if widespread, genetic variance for ‘predictability’ will have major implications for the evolutionary causes and consequences of phenotypic variation.