z-logo
Premium
Evolution of mating types in finite populations: The precarious advantage of being rare
Author(s) -
Czuppon Peter,
Rogers David W.
Publication year - 2019
Publication title -
journal of evolutionary biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.289
H-Index - 128
eISSN - 1420-9101
pISSN - 1010-061X
DOI - 10.1111/jeb.13528
Subject(s) - biology , mating , evolutionary biology , rare events , zoology , ecology , statistics , mathematics
Sexually reproducing populations with self‐incompatibility bear the cost of limiting potential mates to individuals of a different type. Rare mating types escape this cost since they are unlikely to encounter incompatible partners, leading to the deterministic prediction of continuous invasion by new mutants and an ever‐increasing number of types. However, rare types are also at an increased risk of being lost by random drift. Calculating the number of mating types that a population can maintain requires consideration of both the deterministic advantages and the stochastic risks. By comparing the relative importance of selection and drift, we show that a population of size N can maintain a maximum of approximately N 1/3 mating types for intermediate population sizes, whereas for large N , we derive a formal estimate. Although the number of mating types in a population is quite stable, the rare‐type advantage promotes turnover of types. We derive explicit formulas for both the invasion and turnover probabilities in finite populations.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here