Premium
Coevolution of virulence and immunosuppression in multiple infections
Author(s) -
Kamiya Tsukushi,
Mideo Nicole,
Alizon Samuel
Publication year - 2018
Publication title -
journal of evolutionary biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.289
H-Index - 128
eISSN - 1420-9101
pISSN - 1010-061X
DOI - 10.1111/jeb.13280
Subject(s) - virulence , immunosuppression , biology , coinfection , coevolution , host (biology) , adaptation (eye) , immunology , evolutionary biology , genetics , virus , gene , neuroscience
Many components of host–parasite interactions have been shown to affect the way virulence (i.e. parasite‐induced harm to the host) evolves. However, coevolution of multiple parasite traits is often neglected. We explore how an immunosuppressive adaptation of parasites affects and coevolves with virulence in multiple infections. Applying the adaptive dynamics framework to epidemiological models with coinfection, we show that immunosuppression is a double‐edged sword for the evolution of virulence. On one hand, it amplifies the adaptive benefit of virulence by increasing the abundance of coinfections through epidemiological feedbacks. On the other hand, immunosuppression hinders host recovery, prolonging the duration of infection and elevating the cost of killing the host (as more opportunities for transmission will be forgone if the host dies). The balance between the cost and benefit of immunosuppression varies across different background mortality rates of hosts. In addition, we find that immunosuppression evolution is influenced considerably by the precise trade‐off shape determining the effect of immunosuppression on host recovery and susceptibility to further infection. These results demonstrate that the evolution of virulence is shaped by immunosuppression while highlighting that the evolution of immune evasion mechanisms deserves further research attention.