z-logo
Premium
Beyond the wing planform: morphological differentiation between migratory and nonmigratory dragonfly species
Author(s) -
SuárezTovar C. M.,
Sarmiento C. E.
Publication year - 2016
Publication title -
journal of evolutionary biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.289
H-Index - 128
eISSN - 1420-9101
pISSN - 1010-061X
DOI - 10.1111/jeb.12830
Subject(s) - biology , wing , dragonfly , planform , zoology , evolutionary biology , odonata , aerospace engineering , engineering
Migration is a significant trait of the animal kingdom that can impose a strong selective pressure on several structures to overcome the amount of energy that the organism invests in this particular behaviour. Wing linear dimensions and planform have been a traditional focus in the study of flying migratory species; however, other traits could also influence aerodynamic performance. We studied the differences in several flight‐related traits of migratory and nonmigratory L ibellulid species in a phylogenetic context to assess their response to migratory behaviour. Wings were compared by linear measurements, shape, surface corrugations and microtrichia number. Thorax size and pilosity were also compared. Migratory species have larger and smoother wings, a larger anal lobe that is reached through an expansion of the discoidal region, and longer and denser thoracic pilosity. These differences might favour gliding as an energy‐saving displacement strategy. Most of the changes were identified in the hind wings. No differences were observed for the thorax linear dimensions, wetted aspect ratio, some wing corrugations or the wing microtrichiae number. Similar changes in the hind wing are present in clades where migration evolved. Our results emphasize that adaptations to migration through flight may extend to characteristics beyond the wing planform and that some wing characteristics in libellulids converge in response to migratory habits, whereas other closely related structures remain virtually unchanged. Additionally, we concluded that despite a close functional association and similar selective pressures on a structure, significant differences in the magnitude of the response may be present in its components.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here