Premium
Effects of pathogen exposure on life‐history variation in the gypsy moth ( Lymantria dispar )
Author(s) -
Páez D. J.,
FlemingDavies A. E.,
Dwyer G.
Publication year - 2015
Publication title -
journal of evolutionary biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.289
H-Index - 128
eISSN - 1420-9101
pISSN - 1010-061X
DOI - 10.1111/jeb.12699
Subject(s) - lymantria dispar , gypsy moth , biology , dispar , life history , zoology , pathogen , ecology , lepidoptera genitalia , microbiology and biotechnology , entamoeba histolytica
Abstract Investment in host defences against pathogens may lead to trade‐offs with host fecundity. When such trade‐offs arise from genetic correlations, rates of phenotypic change by natural selection may be affected. However, genetic correlations between host survival and fecundity are rarely quantified. To understand trade‐offs between immune responses to baculovirus exposure and fecundity in the gypsy moth ( Lymantria dispar ), we estimated genetic correlations between survival probability and traits related to fecundity, such as pupal weight. In addition, we tested whether different virus isolates have different effects on male and female pupal weight. To estimate genetic correlations, we exposed individuals of known relatedness to a single baculovirus isolate. To then evaluate the effect of virus isolate on pupal weight, we exposed a single gypsy moth strain to 16 baculovirus isolates. We found a negative genetic correlation between survival and pupal weight. In addition, virus exposure caused late‐pupating females to be identical in weight to males, whereas unexposed females were 2–3 times as large as unexposed males. Finally, we found that female pupal weight is a quadratic function of host mortality across virus isolates, which is likely due to trade‐offs and compensatory growth processes acting at high and low mortality levels, respectively. Overall, our results suggest that fecundity costs may strongly affect the response to selection for disease resistance. In nature, baculoviruses contribute to the regulation of gypsy moth outbreaks, as pathogens often do in forest‐defoliating insects. We therefore argue that trade‐offs between host life‐history traits may help explain outbreak dynamics.