Premium
Do aggressive signals evolve towards higher reliability or lower costs of assessment?
Author(s) -
Ręk P.
Publication year - 2014
Publication title -
journal of evolutionary biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.289
H-Index - 128
eISSN - 1420-9101
pISSN - 1010-061X
DOI - 10.1111/jeb.12512
Subject(s) - reliability (semiconductor) , cheating , honesty , signalling , dishonesty , signal (programming language) , maximization , process (computing) , biology , computer science , risk analysis (engineering) , reliability engineering , economics , microeconomics , business , psychology , social psychology , evolutionary biology , engineering , power (physics) , physics , quantum mechanics , programming language , microbiology and biotechnology , operating system
It has been suggested that the evolution of signals must be a wasteful process for the signaller, aimed at the maximization of signal honesty. However, the reliability of communication depends not only on the costs paid by signallers but also on the costs paid by receivers during assessment, and less attention has been given to the interaction between these two types of costs during the evolution of signalling systems. A signaller and receiver may accept some level of signal dishonesty by choosing signals that are cheaper in terms of assessment but that are stabilized with less reliable mechanisms. I studied the potential trade‐off between signal reliability and the costs of signal assessment in the corncrake ( C rex crex ). I found that the birds prefer signals that are less costly regarding assessment rather than more reliable. Despite the fact that the fundamental frequency of calls was a strong predictor of male size, it was ignored by receivers unless they could directly compare signal variants. My data revealed a response advantage of costly signals when comparison between calls differing with fundamental frequencies is fast and straightforward, whereas cheap signalling is preferred in natural conditions. These data might improve our understanding of the influence of receivers on signal design because they support the hypothesis that fully honest signalling systems may be prone to dishonesty based on the effects of receiver costs and be replaced by signals that are cheaper in production and reception but more susceptible to cheating.