Premium
The effect of parity on morphological evolution among phrynosomatid lizards
Author(s) -
Oufiero C. E.,
Gartner G. E. A.
Publication year - 2014
Publication title -
journal of evolutionary biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.289
H-Index - 128
eISSN - 1420-9101
pISSN - 1010-061X
DOI - 10.1111/jeb.12485
Subject(s) - biology , oviparity , lineage (genetic) , trait , allometry , sauria , evolutionary biology , zoology , ecology , lizard , gene , genetics , computer science , programming language
The shift from egg laying to live‐bearing is one of the most well‐studied transitions in evolutionary biology. Few studies, however, have assessed the effect of this transition on morphological evolution. Here, we evaluated the effect of reproductive mode on the morphological evolution of 10 traits, among 108 species of phrynosomatid lizards. We assess whether the requirement for passing shelled eggs through the pelvic girdle has led to morphological constraints in oviparous species and whether long gestation times in viviparous species have led to constraints in locomotor morphology. We fit models to the data that vary both in their tempo (strength and rate of selection) and mode of evolution (Brownian or Ornstein‐Uhlenbeck) and estimates of trait optima. We found that most traits are best fit by a generalized multipeak OU model, suggesting differing trait optima for viviparous vs. oviparous species. Additionally, rates ( σ 2 ) of both pelvic girdle and forelimb trait evolution varied with parity; viviparous species had higher rates. Hindlimb traits, however, exhibited no difference in σ 2 between parity modes. In a functional context, our results suggest that the passage of shelled eggs constrains the morphology of the pelvic girdle, but we found no evidence of morphological constraint of the locomotor apparatus in viviparous species. Our results are consistent with recent lineage diversification analyses, leading to the conclusion that transitions to viviparity increase both lineage and morphological diversification.