Premium
Male interference with pollination efficiency in a hermaphroditic orchid
Author(s) -
Duffy K. J.,
Johnson S. D.
Publication year - 2014
Publication title -
journal of evolutionary biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.289
H-Index - 128
eISSN - 1420-9101
pISSN - 1010-061X
DOI - 10.1111/jeb.12395
Subject(s) - biology , pollination , pollinator , inflorescence , pollen , mating , dioecy , competition (biology) , botany , proboscis , reproductive success , pollen source , ecology , zoology , population , demography , sociology
Hermaphroditism can lead to both intra‐ and intersexual conflict between male and female gender functions. However, the effect that such gender conflicts have on pollination efficiency has seldom been investigated. By artificially reducing the number of available male gametes on an individual, we quantified whether male interference with pollination efficiency occurs in the self‐compatible, moth‐pollinated orchid S atyrium longicauda . We partially emasculated S . longicauda inflorescences and compared pollination success and fecundity in these plants to intact controls. Pollen in both groups of plants was colour‐labelled so that its dispersal by pollinators could be tracked directly in the field. Intact flowers on partially emasculated inflorescences exported more pollen and received more cross‐pollen and less self‐pollen than those on intact inflorescences. Proportion of fruit set per plant was similar between the two treatments; however, fruits on partially emasculated plants had proportionally more viable seeds than those on intact controls. These results provide empirical evidence that male interference with pollination efficiency can occur in a hermaphroditic plant and that such interference can compromise fecundity. The most likely mechanism for such male interference is competition for placement on the proboscis of hawkmoth pollinators. Consequently, male competition for siring success may influence the evolution of sexual systems in hermaphroditic pollinator‐dependent plants.