Premium
Interspecific patterns of phenotypic selection do not predict intraspecific patterns
Author(s) -
Ott J. R.,
Egan S. P.
Publication year - 2014
Publication title -
journal of evolutionary biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.289
H-Index - 128
eISSN - 1420-9101
pISSN - 1010-061X
DOI - 10.1111/jeb.12266
Subject(s) - intraspecific competition , biology , selection (genetic algorithm) , interspecific competition , stabilizing selection , sample size determination , trait , evolutionary biology , ecology , genetic variation , statistics , genetics , mathematics , artificial intelligence , computer science , gene , programming language
We estimated linear (β) and nonlinear (γ) selection gradients to quantify host plant‐mediated selection on the trait gall size in each of 22 unequally sampled subpopulations of the cynipid gall wasp B elonocnema treatae . We characterized the relationship between variation in subpopulation sample size and the magnitude of and the variance among selection gradients. We then tested the hypothesis that the intraspecific patterns we observed would follow two patterns that have emerged from published estimates of linear and nonlinear selection gradients compiled across species, namely that the average magnitude of β and γ and the variance among estimated β and γ decrease with increasing sample size. For both β and γ, intraspecific patterns of phenotypic selection in relation to sample size were not predicted by interspecific patterns. Thus, our results suggest that when selection is heterogeneous among subpopulations, variation in the biological basis for selection is more important in influencing estimates of selection than is variation in study size. Our study highlights the value of inspecting selection in relation to sampling effort at the level at which understanding the sources of variation in selection is most important, among populations within species.