Premium
Sexual selection in fungi
Author(s) -
Nieuwenhuis B. P. S.,
Aanen D. K.
Publication year - 2012
Publication title -
journal of evolutionary biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.289
H-Index - 128
eISSN - 1420-9101
pISSN - 1010-061X
DOI - 10.1111/jeb.12017
Subject(s) - biology , mating type , sexual selection , mating , evolutionary biology , ecological selection , natural selection , sexual reproduction , mate choice , selection (genetic algorithm) , locus (genetics) , sex pheromone , genetics , gene , artificial intelligence , computer science
The significance of sexual selection, the component of natural selection associated with variation in mating success, is well established for the evolution of animals and plants, but not for the evolution of fungi. Even though fungi do not have separate sexes, most filamentous fungi mate in a hermaphroditic fashion, with distinct sex roles, that is, investment in large gametes (female role) and fertilization by other small gametes (male role). Fungi compete to fertilize, analogous to ‘male‐male’ competition, whereas they can be selective when being fertilized, analogous to female choice. Mating types, which determine genetic compatibility among fungal gametes, are important for sexual selection in two respects. First, genes at the mating‐type loci regulate different aspects of mating and thus can be subject to sexual selection. Second, for sexual selection, not only the two sexes (or sex roles) but also the mating types can form the classes, the members of which compete for access to members of the other class. This is significant if mating‐type gene products are costly, thus signalling genetic quality according to Z ahavi's handicap principle. We propose that sexual selection explains various fungal characteristics such as the observed high redundancy of pheromones at the B mating‐type locus of A garicomycotina, the occurrence of multiple types of spores in A scomycotina or the strong pheromone signalling in yeasts. Furthermore, we argue that fungi are good model systems to experimentally study fundamental aspects of sexual selection, due to their fast generation times and high diversity of life cycles and mating systems.