Premium
Crossing the threshold: gene flow, dominance and the critical level of standing genetic variation required for adaptation to novel environments
Author(s) -
Nuismer S. L.,
MacPherson A.,
Rosenblum E. B.
Publication year - 2012
Publication title -
journal of evolutionary biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.289
H-Index - 128
eISSN - 1420-9101
pISSN - 1010-061X
DOI - 10.1111/jeb.12002
Subject(s) - biology , fixation (population genetics) , allele , dominance (genetics) , adaptation (eye) , evolutionary biology , gene flow , genetic architecture , genetics , gene , genetic variation , phenotype , neuroscience
Genetic architecture plays an important role in the process of adaptation to novel environments. One example is the role of allelic dominance, where advantageous recessive mutations have a lower probability of fixation than advantageous dominant mutations. This classic observation, termed ‘Haldane's sieve’, has been well explored theoretically for single isolated populations adapting to new selective regimes. However, the role of dominance is less well understood for peripheral populations adapting to novel environments in the face of recurrent and maladaptive gene flow. Here, we use a combination of analytical approximations and individual‐based simulations to explore how dominance influences the likelihood of adaptation to novel peripheral environments. We demonstrate that in the face of recurrent maladaptive gene flow, recessive alleles can fuel adaptation only when their frequency exceeds a critical threshold within the ancestral range.