z-logo
open-access-imgOpen Access
The effect of carbamazepine on bone structure and strength in control and osteogenesis imperfecta ( Col1a2 +/p.G610C ) mice
Author(s) -
Blank Martha,
McGregor Narelle E.,
Rowley Lynn,
Kung Louise H. W.,
CrimeenIrwin Blessing,
Poulton Ingrid J.,
Walker Emma C.,
Gooi Jonathan H.,
Lamandé Shireen R.,
Sims Natalie A.,
Bateman John F.
Publication year - 2022
Publication title -
journal of cellular and molecular medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.44
H-Index - 130
eISSN - 1582-4934
pISSN - 1582-1838
DOI - 10.1111/jcmm.17437
Subject(s) - osteogenesis imperfecta , carbamazepine , bone structure , medicine , dentistry , epilepsy , anatomy , psychiatry
The inherited brittle bone disease osteogenesis imperfecta (OI) is commonly caused by COL1A1 and COL1A2 mutations that disrupt the collagen I triple helix. This causes intracellular endoplasmic reticulum (ER) retention of the misfolded collagen and can result in a pathological ER stress response. A therapeutic approach to reduce this toxic mutant load could be to stimulate mutant collagen degradation by manipulating autophagy and/or ER‐associated degradation. Since carbamazepine (CBZ) both stimulates autophagy of misfolded collagen X and improves skeletal pathology in a metaphyseal chondrodysplasia model, we tested the effect of CBZ on bone structure and strength in 3‐week‐old male OI Col1a2 +/p.G610C and control mice. Treatment for 3 or 6 weeks with CBZ, at the dose effective in metaphyseal chondrodysplasia, provided no therapeutic benefit to Col1a2 +/p.G610C mouse bone structure, strength or composition, measured by micro‐computed tomography, three point bending tests and Fourier‐transform infrared microspectroscopy. In control mice, however, CBZ treatment for 6 weeks impaired femur growth and led to lower femoral cortical and trabecular bone mass. These data, showing the negative impact of CBZ treatment on the developing mouse bones, raise important issues which must be considered in any human clinical applications of CBZ in growing individuals.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here