
The role of fibroblast growth factor 8 in cartilage development and disease
Author(s) -
Chen Haoran,
Cui Yujia,
Zhang Demao,
Xie Jing,
Zhou Xuedong
Publication year - 2022
Publication title -
journal of cellular and molecular medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.44
H-Index - 130
eISSN - 1582-4934
pISSN - 1582-1838
DOI - 10.1111/jcmm.17174
Subject(s) - fibroblast growth factor , chondrocyte , fibroblast growth factor receptor , mapk/erk pathway , microbiology and biotechnology , cartilage , fibroblast growth factor receptor 3 , biology , cancer research , signal transduction , medicine , receptor , anatomy
Fibroblast growth factor 8 (FGF‐8), also known as androgen‐induced growth factor (AIGF), is presumed to be a potent mitogenic cytokine that plays important roles in early embryonic development, brain formation and limb development. In the bone environment, FGF‐8 produced or received by chondrocyte precursor cells binds to fibroblast growth factor receptor (FGFR), causing different levels of activation of downstream signalling pathways, such as phospholipase C gamma (PLCγ)/Ca 2+ , RAS/mitogen‐activated protein kinase‐extracellular regulated protein kinases (RAS/MAPK‐MEK‐ERK), and Wnt‐β‐catenin‐Axin2 signalling, and ultimately controlling chondrocyte proliferation, differentiation, cell survival and migration. However, the molecular mechanism of FGF‐8 in normal or pathological cartilage remains unclear, and thus, FGF‐8 represents a novel exploratory target for studies of chondrocyte development and cartilage disease progression. In this review, studies assessing the relationship between FGF‐8 and chondrocytes that have been published in the past 5 years are systematically summarized to determine the probable mechanism and physiological effect of FGF‐8 on chondrocytes. Based on the existing research results, a therapeutic regimen targeting FGF‐8 is proposed to explore the possibility of treating chondrocyte‐related diseases.