z-logo
open-access-imgOpen Access
Study on diverse pathological characteristics of heart failure in different stages based on proteomics
Author(s) -
Liu Jinying,
Lian Hongjian,
Yu Jiang,
Wu Jie,
Chen Xiangyang,
wang Peng,
tian Lei,
Yang Yunfei,
Yang Jiaqi,
Li Dong,
Guo Shuzhen
Publication year - 2022
Publication title -
journal of cellular and molecular medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.44
H-Index - 130
eISSN - 1582-4934
pISSN - 1582-1838
DOI - 10.1111/jcmm.17170
Subject(s) - heart failure , proteome , proteomics , biology , quantitative proteomics , muscle hypertrophy , medicine , microbiology and biotechnology , cardiac function curve , kegg , signal transduction , bioinformatics , gene expression , endocrinology , transcriptome , biochemistry , gene
Heart failure is a process characterized by significant disturbance of protein turnover. To elucidate the alterations in cardiac protein expression during the various phases of heart failure and to understand the nature of the processes involved, we analysed the proteome in an established heart failure model at different time points to monitor thousands of different proteins simultaneously. Here, heart failure was induced by transverse aortic constriction (TAC) in KM mice. At 2, 4 and 12 weeks after operation, protein expression profiles were determined in sham‐operated (controls) and TAC mice, using label‐free quantitative proteomics, leading to identification and quantification of almost 4000 proteins. The results of the KEGG pathway enrichment analysis and GO function annotation revealed critical pathways associated with the transition from cardiac hypertrophy to heart failure, such as energy pathways and matrix reorganization. Our study suggests that in the pathophysiology of heart failure, alterations of protein groups related to cardiac energy substrate metabolism and cytoskeleton remodelling could play the more dominant roles for the signalling that eventually results in contractile dysfunction and heart failure.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here