
The molecular mechanism underlying mitophagy‐mediated hippocampal neuron apoptosis in diabetes‐related depression
Author(s) -
Liu Jian,
Liu Lin,
Han YuanShan,
Yi Jian,
Guo Chun,
Zhao HongQing,
Ling Jia,
Wang YuHong
Publication year - 2021
Publication title -
journal of cellular and molecular medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.44
H-Index - 130
eISSN - 1582-4934
pISSN - 1582-1838
DOI - 10.1111/jcmm.16763
Subject(s) - mitophagy , parkin , glutamate receptor , hippocampal formation , biology , endocrinology , microbiology and biotechnology , neuron , medicine , chemistry , neuroscience , apoptosis , receptor , autophagy , biochemistry , parkinson's disease , disease
Diabetes‐related depression (DD) is a major complication of diabetes mellitus. Our previous studies indicated that glutamate (Glu) and hippocampal neuron apoptosis are key signal and direct factor leading to diabetes‐related depression, respectively. However, the accurate pathogenesis remains to be unclear. We hypothesized that diabetes‐related depression might be associated with the mitophagy‐mediated hippocampal neuron apoptosis, triggered by aberrant Glu‐glutamate receptor2 (GluR2)‐Parkin pathway. To testify this hypothesis, here the rat model of DD in vivo and in vitro were both established so as to uncover the potential mechanism of DD based on mitophagy and apoptosis. We found that DD rats exhibit an elevated glutamate levels followed by monoamine neurotransmitter deficiency and depressive‐like behaviour, and DD modelling promoted autophagosome formation and caused mitochondrial impairment, eventually leading to hippocampal neuron apoptosis via aberrant Glu‐GluR2‐Parkin pathway. Further, in vitro study demonstrated that the simulated DD conditions resulted in an abnormal glutamate and monoamine neurotransmitter levels followed by autophagic flux increment, mitochondrial membrane potential reduction and mitochondrial reactive oxygen species and lactic dehydrogenase elevation. Interestingly, both GluR2 and mammalian target of rapamycin (mTOR) receptor blocker aggravated mitophagy‐induced hippocampal neuron apoptosis and abnormal expression of apoptotic protein. In contrast, both GluR2 and mTOR receptor agonist ameliorated those apoptosis in simulated DD conditions. Our findings revealed that mitophagy‐mediated hippocampal neuron apoptosis, triggered by aberrant Glu‐GluR2‐Parkin pathway, is responsible for depressive‐like behaviour and monoamine neurotransmitter deficiency in DD rats. This work provides promising molecular targets and strategy for the treatment of DD.