
Exosomes derived from MSC pre‐treated with oridonin alleviates myocardial IR injury by suppressing apoptosis via regulating autophagy activation
Author(s) -
Fu Minghuan,
Xie Dili,
Sun Ying,
Pan Yuanyuan,
Zhang Yunhe,
Chen Xiaohan,
Shi Yong,
Deng Shengnan,
Cheng Biao
Publication year - 2021
Publication title -
journal of cellular and molecular medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.44
H-Index - 130
eISSN - 1582-4934
pISSN - 1582-1838
DOI - 10.1111/jcmm.16558
Subject(s) - microvesicles , apoptosis , cd63 , western blot , autophagy , autophagy related protein 13 , mesenchymal stem cell , exosome , chemistry , cancer research , microbiology and biotechnology , cell cycle , biology , biochemistry , microrna , gene , cyclin dependent kinase 2
This study aimed to investigate the molecular mechanisms underlying the role of bone marrow mesenchymal stem cells (BMMSCs)‐derived exosomes in ischaemia/reperfusion (IR)‐induced damage, and the role of oridonin in the treatment of IR. Exosomes were isolated from BMMSCs. Western blot analysis was done to examine the expression of proteins including CD63, CD8, apoptotic‐linked gene product 2 interacting protein X (AliX), Beclin‐1, ATG13, B‐cell lymphoma‐2 (Bcl‐2), apoptotic peptidase activating factor 1 (Apaf1) and Bcl2‐associated X (Bax) in different treatment groups. Accordingly, the expression of CD63, CD81 and AliX was higher in BMMSCs‐EXOs and IR + BMMSCs‐EXOs + ORI groups compared with that in the BMMSCs group. And BMMSCs‐derived exosomes inhibited the progression of IR‐induced myocardial damage, while this protective effect was boosted by the pre‐treatment with oridonin. Moreover, Beclin‐1, ATG13 and Bcl‐2 were significantly down‐regulated while Apaf1 and Bax were significantly up‐regulated in IR rats. And the presence of BMMSCs‐derived exosomes partly alleviated IR‐induced dysregulation of these proteins, while the oridonin pre‐treatment boosted the effect of these BMMSCs‐derived exosomes. The inhibited proliferation and promoted apoptosis of H9c2 cells induced by hypoxia/reperfusion (HR) were mitigated by the administration of BMMSCs‐derived exosomes. Meanwhile, HR also induced down‐regulation of Beclin‐1, ATG13 and Bcl‐2 expression and up‐regulation of Apaf1 and Bax, which were mitigated by the administration of BMMSCs‐derived exosomes. And oridonin pre‐treatment boosted the effect of BMMSCs‐derived exosomes. In conclusion, our results validated that BMMSCs‐derived exosomes suppressed the IR‐induced damages by participating in the autophagy process, while the pre‐treatment with oridonin could boost the protective effect of BMMSCs‐derived exosomes.