
Inhibition of IRE1/JNK pathway in HK‐2 cells subjected to hypoxia‐reoxygenation attenuates mesangial cells‐derived extracellular matrix production
Author(s) -
Liang Yan,
Liang Lulu,
Liu Zhenjie,
Wang Yingzi,
Dong Xiubing,
Qu Lingyun,
Gou Rong,
Wang Yulin,
Wang Qian,
Liu Zhangsuo,
Tang Lin
Publication year - 2020
Publication title -
journal of cellular and molecular medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.44
H-Index - 130
eISSN - 1582-4934
pISSN - 1582-1838
DOI - 10.1111/jcmm.15964
Subject(s) - unfolded protein response , mesangial cell , endoplasmic reticulum , microbiology and biotechnology , glomerulosclerosis , inflammation , stat3 , cancer research , p38 mitogen activated protein kinases , signal transduction , chemistry , medicine , endocrinology , kidney , biology , mapk/erk pathway , proteinuria
Endoplasmic reticulum (ER) stress and inflammatory responses play active roles in the transition of acute kidney injury (AKI) to chronic kidney disease (CKD). Inositol‐requiring enzyme 1 (IRE1) activates c‐Jun NH 2 ‐terminal kinase (JNK) in ER stress. Tubular epithelial cells (TEC) are the main injury target and source of AKI inflammatory mediators. TEC injury may lead to glomerulosclerosis, however, the underlying mechanism remains unclear. Here, hypoxia/reoxygenation (H/R) HK‐2 cells were used as an AKI model. To determine the partial effects of TEC injury on the glomerulus, HK‐2 cells after H/R were co‐cultured with human renal mesangial cells (HRMC). H/R up‐regulated ER stress, IRE1/JNK pathway, IL‐6 and MCP‐1 in HK‐2 cells. Stimulation of HRMC with IL‐6 enhanced their proliferation and the expression of glomerulosclerosis‐associated fibronectin and collagen IV via signal transducer and activator of transcription 3 (STAT3) activation. Similar responses were observed in HRMC co‐cultured with HK‐2 cells after H/R. IRE1/JNK inhibition reversed these injury responses in HRMC. IRE1/JNK stable knock‐down in HK‐2 cells and shRNA‐mediated STAT3 depletion in HRMC confirmed their role in inflammation/glomerulosclerosis. These findings suggest that IRE1/JNK pathway mediates inflammation in TEC, affecting mesangial cells. The inhibition of this pathway could be a feasible approach to prevent AKI‐CKD transition.