
Characterization and prognostic significance of alternative splicing events in lower‐grade diffuse gliomas
Author(s) -
Zhao Zheng,
Li GuanZhang,
Liu YuQing,
Huang RuoYu,
Wang KuanYu,
Jiang HaoYu,
Li RenPeng,
Chai RuiChao,
Zhang ChuanBao,
Wu Fan
Publication year - 2020
Publication title -
journal of cellular and molecular medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.44
H-Index - 130
eISSN - 1582-4934
pISSN - 1582-1838
DOI - 10.1111/jcmm.15924
Subject(s) - rna splicing , glioma , alternative splicing , gene , proportional hazards model , biology , computational biology , pathological , survival analysis , oncology , medicine , cancer research , genetics , pathology , exon , rna
Alternative splicing (AS) is assumed to play important roles in the progression and prognosis of cancer. Currently, the comprehensive analysis and clinical relevance of AS in lower‐grade diffuse gliomas have not been systematically addressed. Here, we gathered alternative splicing data of lower‐grade diffuse gliomas from SpliceSeq. Based on the Percent Spliced In (PSI) values of 515 lower‐grade diffuse glioma patients from the Cancer Genome Atlas (TCGA), we performed subtype‐differential AS analysis and consensus clustering to determine robust clusters of patients. A total of 48 050 AS events in 10 787 genes in lower‐grade diffuse gliomas were profiled. Subtype‐differential splicing analysis and functional annotation revealed that spliced genes were significantly enriched in numerous cancer‐related biological phenotypes and signalling pathways. Consensus clustering using AS events identified three robust clusters of patients with distinguished pathological and prognostic features. Moreover, each cluster was also associated with distinct genomic alterations. Finally, we developed and validated an AS‐related signature with Cox proportional hazards model. The signature, significantly associated with clinical and molecular features, could serve as an independent prognostic factor for lower‐grade diffuse gliomas. Thus, our results indicated that AS events could discriminate molecular subtypes and have prognostic impact in lower‐grade diffuse gliomas.