
Mesenchymal stem cells‐derived exosomes ameliorate intervertebral disc degeneration through inhibiting pyroptosis
Author(s) -
Zhang Jingwei,
Zhang Jieyuan,
Zhang Yunlong,
Liu Wenjun,
Ni Weifeng,
Huang Xiaoyan,
Yuan Junjie,
Zhao Bizeng,
Xiao Haijun,
Xue Feng
Publication year - 2020
Publication title -
journal of cellular and molecular medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.44
H-Index - 130
eISSN - 1582-4934
pISSN - 1582-1838
DOI - 10.1111/jcmm.15784
Subject(s) - pyroptosis , mesenchymal stem cell , microvesicles , microbiology and biotechnology , exosome , cell , stem cell therapy , biology , programmed cell death , chemistry , cancer research , apoptosis , microrna , biochemistry , gene
Mesenchymal stem cell (MSCs)‐based therapies have shown a promised result for intervertebral disc degeneration (IVDD) treatment. However, its molecular mechanisms remain unclear. Exosomes involve cell‐cell communication via transference of its contents among different cells, and the present potential effect on cell death regulation. This study aimed to investigate the role of MSCs‐derived exosomes on IVDD formation. Here, we first found the NLRP3‐mediated nucleus pulposus cell (NP cell) pyroptosis was activated in the IVDD mice model and lipopolysaccharide (LPS)‐induced model. However, MSCs treatment could inhibit NP cell pyroptosis in vitro. We then isolated MSCs‐derived exosomes by differential centrifugation and identified the characteristics. Secondly, we investigated the function of MSCs‐derived exosomes on LPS‐induced NP cell pyroptosis. Finally, we presented evidence that MSCs‐derived exosomal miR‐410 was a crucial regulator of pyroptosis. Results showed that MSCs‐derived exosomes play an anti‐pyroptosis role by suppressing the NLRP3 pathway. Moreover, it suggested that this effect was attributed to miR‐410, which was derived from MSCs‐exosomes and could directly bind to NLRP3mRNA. In conclusion, for the first time, we demonstrated that MSCs‐exosome treatment may inhibit pyroptosis and could be a promising therapeutic strategy for IVDD.