z-logo
open-access-imgOpen Access
α‐Mangostin‐encapsulated PLGA nanoparticles inhibit colorectal cancer growth by inhibiting Notch pathway
Author(s) -
Chandra Boinpelly Varun,
Verma Raj K.,
Srivastav Sudesh,
Srivastava Rakesh K.,
Shankar Sharmila
Publication year - 2020
Publication title -
journal of cellular and molecular medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.44
H-Index - 130
eISSN - 1582-4934
pISSN - 1582-1838
DOI - 10.1111/jcmm.15731
Subject(s) - notch signaling pathway , homeobox protein nanog , cd44 , cancer stem cell , microbiology and biotechnology , cancer research , population , biology , stem cell , carcinogenesis , chemistry , signal transduction , cell , cancer , embryonic stem cell , induced pluripotent stem cell , medicine , biochemistry , genetics , environmental health , gene
Colorectal cancer (CRC) is the fourth leading cause of cancer‐related mortality. Recent studies have stated that Notch signalling is highly activated in cancer stem cells (CSCs) and plays an important role in the development and progression of CRC. Like normal colorectal epithelium, CRCs are organized hierarchically and include populations of CSCs. In order to enhance the biological activity of α‐mangostin, we formulated α‐mangostin‐encapsulated PLGA nanoparticles (Mang‐NPs) and examined the molecular mechanisms by which Mang‐NPs inhibit CRC cell viability, colony formation, epithelial‐mesenchymal transition (EMT) and induce apoptosis. Mang‐NPs inhibited cell viability, colony formation and induced apoptosis. Mang‐NPs also inhibited EMT by up‐regulating E‐cadherin and inhibiting N‐cadherin and transcription factors Snail, Slug and Zeb1. As dysregulated signalling through the Notch receptors promotes oncogenesis, we measured the effects of Mang‐NPs on Notch pathway. Mang‐NPs inhibited Notch signalling by suppressing the expression of Notch receptors (Notch1 and Notch2), their ligands (Jagged 1 and DLL4), γ‐secretase complex protein (Nicastrin) and downstream target (Hes‐1). Notch receptor signalling regulates cell fate determination in stem cell population. Finally, Mang‐NPs inhibited the self‐renewal capacity of CSCs, stem cell markers (CD133, CD44, Musashi and LGR5) and pluripotency maintaining factors (Oct4, Sox‐2, KLF‐4, c‐Myc and Nanog). Overall, our data suggest that Mang‐NPs can inhibit CRC growth, EMT and CSCs’ population by suppressing Notch pathway and its target. Therefore, Mang‐NPs can be used for the treatment and prevention of CRC.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here