z-logo
open-access-imgOpen Access
Comprehensive analysis of autophagy‐related prognostic genes in breast cancer
Author(s) -
Lai Jianguo,
Chen Bo,
Mok Hsiaopei,
Zhang Guochun,
Ren Chongyang,
Liao Ning
Publication year - 2020
Publication title -
journal of cellular and molecular medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.44
H-Index - 130
eISSN - 1582-4934
pISSN - 1582-1838
DOI - 10.1111/jcmm.15551
Subject(s) - proportional hazards model , receiver operating characteristic , oncology , cohort , medicine , breast cancer , lasso (programming language) , multivariate statistics , survival analysis , multivariate analysis , area under the curve , cancer , biology , statistics , mathematics , world wide web , computer science
Abstract Accumulating evidence revealed that autophagy played vital roles in breast cancer (BC) progression. Thus, the aim of this study was to investigate the prognostic value of autophagy‐related genes (ARGs) and develop a ARG‐based model to evaluate 5‐year overall survival (OS) in BC patients. We acquired ARG expression profiling in a large BC cohort (N = 1007) from The Cancer Genome Atlas (TCGA) database. The correlation between ARGs and OS was confirmed by the LASSO and Cox regression analyses. A predictive model was established based on independent prognostic variables. Thus, time‐dependent receiver operating curve (ROC), calibration plot, decision curve and subgroup analysis were conducted to determine the predictive performance of ARG‐based model. Four ARGs (ATG4A, IFNG, NRG1 and SERPINA1) were identified using the LASSO and multivariate Cox regression analyses. A ARG‐based model was constructed based on the four ARGs and two clinicopathological risk factors (age and TNM stage), dividing patients into high‐risk and low‐risk groups. The 5‐year OS of patients in the low‐risk group was higher than that in the high‐risk group ( P  < 0.0001). Time‐dependent ROC at 5 years indicated that the four ARG–based tool had better prognostic accuracy than TNM stage in the training cohort (AUC: 0.731 vs 0.640, P  < 0.01) and validation cohort (AUC: 0.804 vs 0.671, P  < 0.01). The mutation frequencies of the four ARGs (ATG4A, IFNG, NRG1 and SERPINA1) were 0.9%, 2.8%, 8% and 1.3%, respectively. We built and verified a novel four ARG–based nomogram, a credible approach to predict 5‐year OS in BC, which can assist oncologists in determining effective therapeutic strategies.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here