
ML264 inhibits osteosarcoma growth and metastasis via inhibition of JAK2/STAT3 and WNT/β‐catenin signalling pathways
Author(s) -
Huang Hai,
Han Ying,
Chen Zhijun,
Pan Xin,
Yuan Putao,
Zhao Xiangde,
Zhu Hongfang,
Wang Jiying,
Sun Xuewu,
Shi Peihua
Publication year - 2020
Publication title -
journal of cellular and molecular medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.44
H-Index - 130
eISSN - 1582-4934
pISSN - 1582-1838
DOI - 10.1111/jcmm.15226
Subject(s) - osteosarcoma , cancer research , wnt signaling pathway , vimentin , epithelial–mesenchymal transition , clonogenic assay , cell growth , stat3 , cell cycle , chemistry , biology , apoptosis , metastasis , signal transduction , microbiology and biotechnology , cancer , immunology , immunohistochemistry , biochemistry , genetics
Osteosarcoma, the most common bone malignancy, has a high morbidity rate and poor prognosis. Krüppel‐like factor 5 (KLF5) is a key transcriptional regulator of cellular proliferation whose overexpression is observed in osteosarcoma cell lines (U2OS, 143B, MG63 and SAOS2). ML264, a small‐molecule inhibitor of KLF5, exerts antiproliferative effects in colorectal cancer; however, its function in osteosarcoma remains unknown. Here, we explored the possible antitumour effects of ML264 on 143B and U2OS cell lines and murine tumour xenograft model. ML264 suppressed proliferation and clonogenic ability of osteosarcoma cells in a dose‐dependent manner. Moreover, ML264 induced G0/G1 cell cycle arrest, with no influence on apoptosis, and inhibited the migratory and invasive abilities of osteosarcoma cells, as demonstrated by wound‐healing and Transwell assays. Exposure to ML264 reduced the mRNA and protein levels of molecules associated with epithelial‐mesenchymal transition phenotype, including N‐cadherin, vimentin, Snail, matrix metalloproteinase (MMP) 9 and MMP13. Inhibition of signal transducer and activator of transcription (STAT) 3 phosphorylation and Wnt signalling was also observed. In the murine model of osteosarcoma, tumour growth was efficiently suppressed following a 10‐day treatment with ML264. Collectively, our findings demonstrate the potential value of ML264 as a novel anticancer drug for osteosarcoma.