z-logo
open-access-imgOpen Access
Humanin analogue, HNG, inhibits platelet activation and thrombus formation by stabilizing platelet microtubules
Author(s) -
Ren Lijie,
Li Qing,
You Tao,
Zhao Xuefei,
Xu Xingshun,
Tang Chaojun,
Zhu Li
Publication year - 2020
Publication title -
journal of cellular and molecular medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.44
H-Index - 130
eISSN - 1582-4934
pISSN - 1582-1838
DOI - 10.1111/jcmm.15151
Subject(s) - platelet , thrombus , platelet activation , microtubule , microbiology and biotechnology , nocodazole , chemistry , tubulin , cytoskeleton , biochemistry , medicine , biology , cell
HNG, a highly potent mutant of the anti‐Alzheimer peptide‐humanin, has been shown to protect against ischaemia‐reperfusion (I/R) injury. However, the underlying mechanism related to platelet activation remains unknown. We proposed that HNG has an effect on platelet function and thrombus formation. In this study, platelet aggregation, granule secretion, clot retraction, integrin activation and adhesion under flow conditions were evaluated. In mice receiving HNG or saline, cremaster arterial thrombus formation induced by laser injury, tail bleeding time and blood loss were recorded. Platelet microtubule depolymerization was evaluated using immunofluorescence staining. Results showed that HNG inhibited platelet aggregation, P‐selectin expression, ATP release, and α IIb β 3 activation and adhesion under flow conditions. Mice receiving HNG had attenuated cremaster arterial thrombus formation, although the bleeding time was not prolonged. Moreover, HNG significantly inhibited microtubule depolymerization, enhanced tubulin acetylation in platelets stimulated by fibrinogen or microtubule depolymerization reagent, nocodazole, and inhibited AKT and ERK phosphorylation downstream of HDAC6 by collagen stimulation. Therefore, our results identified a novel role of HNG in platelet function and thrombus formation potentially through stabilizing platelet microtubules via tubulin acetylation. These findings suggest a potential benefit of HNG in the management of cardiovascular diseases.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here