z-logo
open-access-imgOpen Access
FAM46C controls antibody production by the polyadenylation of immunoglobulin mRNAs and inhibits cell migration in multiple myeloma
Author(s) -
Herrero Ana Belén,
Quwaider Dalia,
Corchete Luis Antonio,
Mateos Maria Victoria,
GarcíaSanz Ramón,
Gutiérrez Norma C.
Publication year - 2020
Publication title -
journal of cellular and molecular medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.44
H-Index - 130
eISSN - 1582-4934
pISSN - 1582-1838
DOI - 10.1111/jcmm.15078
Subject(s) - antibody , messenger rna , biology , microbiology and biotechnology , gene expression , gene , chemistry , biochemistry , immunology
FAM46C , frequently mutated in multiple myeloma (MM), has recently been shown to encode a non‐canonical poly(A) polymerase (ncPAP). However, its target mRNAs and its role in MM pathogenesis remain mostly unknown. Using CRISPR‐Cas9 technology and gene expression analysis, we found that the inactivation of FAM46C in MM down‐regulates immunoglobulins (Igs) and several mRNAs encoding ER‐resident proteins, including some involved in unfolded protein response and others that affect glycosylation. Interestingly, we show that FAM46C expression is induced during plasma cell (PC) differentiation and that Ig mRNAs encoding heavy and light chains are substrates of the ncPAP, as revealed by poly(A) tail‐length determination assays. The absence of the ncPAP results in Ig mRNA poly(A) tail‐shortening, leading to a reduction in mRNA and protein abundance. On the other hand, loss of FAM46C up‐regulates metastasis‐associated lncRNA MALAT1 and results in a sharp increase in the migration ability. This phenotype depends mainly on the activation of PI3K/Rac1 signalling, which might have significant therapeutic implications. In conclusion, our results identify Ig mRNAs as targets of FAM46C, reveal an important function of this protein during PC maturation to increase antibody production and suggest that its role as a tumour suppressor might be related to the inhibition of myeloma cell migration.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here