z-logo
open-access-imgOpen Access
Therapeutic effects of higenamine combined with [6]‐gingerol on chronic heart failure induced by doxorubicin via ameliorating mitochondrial function
Author(s) -
Wen Jianxia,
Zhang Lu,
Wang Jian,
Wang Jiabo,
Wang Lifu,
Wang Ruilin,
Li Ruisheng,
Liu Honghong,
Wei Shizhang,
Li Haotian,
Zou Wenjun,
Zhao Yanling
Publication year - 2020
Publication title -
journal of cellular and molecular medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.44
H-Index - 130
eISSN - 1582-4934
pISSN - 1582-1838
DOI - 10.1111/jcmm.15041
Subject(s) - pharmacology , cardiotoxicity , heart failure , ampk , chronotropic , doxorubicin , viability assay , inotrope , chemistry , mitochondrion , cardiac function curve , apoptosis , biology , medicine , biochemistry , endocrinology , protein kinase a , toxicity , enzyme , chemotherapy , heart rate , blood pressure
Higenamine (HG) is a natural benzylisoquinoline alkaloid isolated from Aconitum with positive inotropic and chronotropic effects. This study aimed to investigate the possible cardioprotective effects of HG combined with [6]‐gingerol (HG/[6]‐GR) against DOX‐induced chronic heart failure (CHF) by comprehensive approaches. DOX‐induced cardiotoxicity model in rats and H9c2 cells was established. Therapeutic effects of HG/[6]‐GR on haemodynamics, serum indices and histopathology of cardiac tissue were analysed. Cell mitochondrial energy phenotype and cell mitochondrial fuel flex were measured by a Seahorse XFp analyser. Moreover, UHPLC‐Q‐TOF/MS was performed to explore the potential metabolites affecting the therapeutic effects and pathological process of CHF. To further investigate the potential mechanism of HG/[6]‐GR, mRNA and protein expression levels of RAAS and LKB1/AMPK/Sirt1‐related pathways were detected. The present data demonstrated that the therapeutic effects of HG/[6]‐GR combination on CHF were presented in ameliorating heart function, down‐regulation serum indices and alleviating histological damage of heart tissue. Besides, HG/[6]‐GR has an effect on increasing cell viability of H9c2 cells, ameliorating DOX‐induced mitochondrial dysfunction and elevating mitochondrial OCR and ECAR value. Metabolomics analyses showed that the therapeutic effect of HG/[6]‐GR combination is mainly associated with the regulation of fatty acid metabolites and energy metabolism pathways. Furthermore, HG/[6]‐GR has an effect on down‐regulating RAAS pathway‐related molecules and up‐regulating LKB1/AMPKα/Sirt1‐related pathway. The present work demonstrates that HG/[6]‐GR prevented DOX‐induced cardiotoxicity via the cardiotonic effect and promoting myocardial energy metabolism through the LKB1/AMPKα/Sirt1 signalling pathway, which promotes mitochondrial energy metabolism and protects against CHF.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here