z-logo
open-access-imgOpen Access
Increased proliferation of hepatic periportal ductal progenitor cells contributes to persistent hypermetabolism after trauma
Author(s) -
Diao Li,
Yousuf Yusef,
AminiNik Saeid,
Jeschke Marc G.
Publication year - 2020
Publication title -
journal of cellular and molecular medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.44
H-Index - 130
eISSN - 1582-4934
pISSN - 1582-1838
DOI - 10.1111/jcmm.14845
Subject(s) - hypermetabolism , progenitor cell , biology , progenitor , inflammation , stem cell , liver cytology , endocrinology , cancer research , immunology , medicine , microbiology and biotechnology , liver metabolism
Prolonged and persistent hypermetabolism and excessive inflammatory response after severe trauma is detrimental and associated with poor outcome. The predisposing pathology or signals mediating this complex response are essentially unknown. As the liver is the central organ mediating the systemic metabolic responses and considering that adult hepatic stem cells are on top of the hierarchy of cell differentiation and may pass epigenetic information to their progeny, we asked whether liver progenitor cells are activated, signal hypermetabolism upon post‐traumatic cellular stress responses, and pass this to differentiated progeny. We generated Sox9CreER T2 : ROSA26 EYFP mice to lineage‐trace the periportal ductal progenitor cells (PDPCs) and verify the fate of these cells post‐burn. We observed increased proliferation of PDPCs and their progeny peaking around two weeks post‐burn, concomitant with the hepatomegaly and the cellular stress responses. We then sorted out PDPCs, PDPC‐derived hepatocytes and mature hepatocytes, compared their transcriptome and showed that PDPCs and their progeny present a significant up‐regulation in signalling pathways associated with inflammation and metabolic activation, contributing to persistent hypermetabolic and hyper‐inflammatory state. Furthermore, concomitant down‐regulation of LXR signalling in PDPCs and their progeny implicates the therapeutic potential of early and short‐term administration of LXR agonists in ameliorating such persistent hypermetabolism.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here