
Inhibition of TIM‐4 protects against cerebral ischaemia‐reperfusion injury
Author(s) -
Zheng Lifang,
Huang Yongqian,
Wang Xinghua,
Wang Xijia,
Chen Wei,
Cheng Wei,
Pan Chunlian
Publication year - 2020
Publication title -
journal of cellular and molecular medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.44
H-Index - 130
eISSN - 1582-4934
pISSN - 1582-1838
DOI - 10.1111/jcmm.14754
Subject(s) - microglia , ischemia , reperfusion injury , pharmacology , medicine , in vivo , apoptosis , western blot , in vitro , inflammation , immunology , chemistry , biology , biochemistry , microbiology and biotechnology , gene
TIM‐4 plays an important role in ischaemia‐reperfusion injury of liver and kidney; however, the effects of TIM‐4 on cerebral ischaemia‐reperfusion injury (IRI) are unknown. The purpose of the present study was to investigate the potential role of TIM‐4 in experimental brain ischaemia‐reperfusion injury. In this study, cerebral ischaemia reperfusion was induced by transient middle cerebral artery occlusion (MCAO) for 1 hour in C57/BL6 mice. The TIM‐4 expression was detected in vivo or vitro by real‐time quantitative polymerase chain reaction, Western blot and flow cytometric analysis. In vivo, the administration of anti‐TIM‐4 antibodies significantly suppressed apoptosis, inhibited inflammatory cells and enhanced anti‐inflammatory responses. In vitro, activated microglia exhibited reduced cellular proliferation and induced IRI injury when co‐cultured with neurons; these effects were inhibited by anti‐TIM‐4 antibody treatment. Similarly, microglia transfected with TIM‐4 siRNA and stimulated by LPS + IFN‐γ alleviated the TIM‐4‐mediated damage to neurons. Collectively, our data indicate that the inhibition of TIM‐4 can improve the inflammatory response and exerts a protective effect in cerebral ischaemia‐reperfusion injury.